III-SEM./ELECTRICAL/ EME/ELECTRICAL[PT] /EEE / ELECTRICAL(INST & CTRL) 2021(W)

TH-II Circuit & Network Theory

Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

Answer All questions

2 x 10

State Ohm's law.

What do you mean by active element. Give two examples.

Cyc Define permeability and reluctance.

State KCL & KVL.

Give the statement of Thevenin's theorem.

State the necessary mathematical formulation for conversion from star to delta and vice versa.

g Define power factor and power triangle.

Define Q-factor and selectivity in series circuit.

Define coefficient of coupling.

Write two property of series resonance.

2. Answer Any Six Questions

5X6

a.

(a) Find the power loss in 1Ω resistor of the figure as shown below.

b.

(a) Find the total inductance of the series connected coupled coils as shown below.

M12=0.5H,M23=1H,M31=1 H,L1=2H,L2=1 H,L3=2 H

- Explain briefly about B-H curve.
- d State the condition of resonance in series R,L,C circuit. Derive the expression of resonant frequency for series R,L,C circuit.
- e. State and derive the condition for maximum power transfer in a circuit and write the expression for maximum power.
- Define filter. Classify pass band, stop band filters with neat diagram.
 - g Briefly explain about the Z,Y,ABCD and h parameters.
- By using superposition theorem find the current through 20 Ω resistor of the circuit as shown in the figure below.

10

- Draw the characteristics curve between charging current and time during 10 charging current and time during charging and discharging condition of a series RL circuit.
- Design a HPF (both T and ∏ network) having a cut off frequency of 2 kHz with a 10 load resistance of 300 Ω.
- load resistance of 300 Ω.

 Obtain Z-parameters of the below circuit.

 10

A resistance of 10 Ω, an inductor of inductance of 20 H and a capacitor of 10 capacitance 100 micro farad are connected to a single phase 230 V AC source. Find (i) current, (ii) power factor, (iii) active power consumption corresponding to supply frequencies of 50 Hz and 100 Hz respectively.